If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+-2t+-3=0
We add all the numbers together, and all the variables
3t^2-2t=0
a = 3; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·3·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*3}=\frac{0}{6} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*3}=\frac{4}{6} =2/3 $
| 1x+6=7x+0 | | (2m+12)=7m-3 | | x-31=33 | | 4+8=2x | | 22=-2(5x+4) | | 220=w(11 | | 8m+(7m-1)=(5-m)-(3-m) | | (7-x)+4=2x+5 | | x-90=-81 | | 2x=77-22 | | -36=-81p^2 | | y5=4 | | y =4 | | 4+2x/2=9 | | 8(r+10)+6=102 | | 4(k²-4)=0 | | (7-v)=3 | | x-1=(x+1)(x-1) | | (t-3)=3t+12 | | 16x-12=25x-9 | | 20÷m=5 | | 7x-21+25=5x+5 | | 7x+24=3x+92° | | 225=100x | | 40+5x=50+2x | | 10+8(-5b)=90 | | 7/8+y=14 | | m13=9+m | | (7m)+2=37 | | -(-3+x)=9 | | 188-u=251 | | -3x+8-x=10-4x-x |